ARITHMETIC AND GEOMETRIC PROGRESSIONS

1) Complete the following sequences:
a) $3,10,17$, \qquad ...
b) $2,6,18$, \qquad
\qquad
c) $-11,-6,-1$, \qquad
d) $-1,7,-49, \ldots, \ldots$
2) Determine whether the following sequences are arithmetic or geometric progressions (or neither)
a) $5,-1,-7,-13$,..
b) $2,3,7,8,12, \ldots .$.
c) $2,1, \frac{1}{2}, \frac{1}{4}$,
d) $27,9,3,1, \ldots \ldots$.
3) 164 is the first term in an arithmetic progression, 173 is the second term in the sequence. Find the 93rd term in the sequence.
4) Find the $10^{\text {th }}$ of the progression: $-3,1,5,9, \ldots .$.
5) Find the $7^{\text {th }}$ of the progression: $2,4,8,16 \ldots .$.
6) Find the sum of the first 100 terms of the progression: $1,6,11,16, \ldots$.
7) Find the sum of the first 50 terms of the progression: $1,6,36,216, \ldots$.
8) The first and the $6^{\text {th }}$ of a geometric progression are $\frac{5}{2}$ and $\frac{1215}{2}$. Find the value of r.
9) Find the sum to infinity of the geometric progression: $81,-27,9, \ldots . .$.
10) The sum to infinity in a geometric progression is 200 . Given that the first term is 52 . Find the common ratio, r.

SOLUTION

1) Complete the following sequences:
a) $3,10,17,24,31$,..
b) $2,6,18,54,162, \ldots$.
c) $-11,-6,-1,4,9, \ldots$
d) $-1,7,-49,343,-2401$,
2) Determine whether the following sequences are arithmetic or geometric progressions (or neither)
a) $5,-1,-7,-13, \ldots . .$. Arithmetic progression, difference +6
b) $2,3,7,8,12, \ldots$. . No progression
c) $2,1, \frac{1}{2}, \frac{1}{4}, \ldots \ldots$. Geometric progression, common ratio $\frac{1}{2}$
d) $27,9,3,1, \ldots . .$. . Geometric progression, common ratio $\frac{1}{3}$
3) 164 is the first term in an arithmetic progression, 173 is the second term in the sequence. Find the 93rd term in the sequence.
Difference $d=173-164=9$
$a_{n}=a_{1}+(n-1) d \rightarrow a_{93}=164+(93-1) 9=164+92 \times 9=992$
The 93 rd term in the sequence is 992
4) Find the $10^{\text {th }}$ of the progression: $-3,1,5,9, \ldots .$.

It is a AP (Arithmetic progression) with $d=4$
$a_{10}=a_{1}+(10-1) d \rightarrow a_{10}=-3+9 \times 4=33$
5) Find the $7^{\text {th }}$ of the progression: $2,4,8,16$.

It is a GP (Geometric progression) with $r=2$
$a_{n}=a_{1} \times r^{n-1} \rightarrow a_{7}=a_{1} \times r^{6}=2 \times 2^{6}=2^{7}=128$
6) Find the sum of the first 100 terms of the progression: $1,6,11,16, \ldots$.

It is a AP (Arithmetic progression) with $d=5$ and $a_{1}=1$
$S_{n}=\frac{\left(a_{1}+a_{n}\right) \times n}{2} ; \quad a_{100}=1+99 \times 5=496$
$S_{100}=\frac{\left(a_{1}+a_{100}\right) \times 100}{2}=\frac{(1+496) \times 100}{2}=24850$
7) Find the sum of the first 50 terms of the progression: $1,6,36,216, \ldots$ It is a GP (Geometric progression) with $r=6(>1)$ and $a_{1}=1$
$a_{50}=a_{1} \times r^{49}=1 \times 6^{49}=6^{49}$
$S_{n}=\frac{a_{n} r-a_{1}}{r-1} \rightarrow S_{50}=\frac{a_{50} \times r-a_{1}}{r-1}=\frac{6^{49} \times 6-1}{6-1}=\frac{6^{50}-1}{5}=1.62 \times 10^{38}$
8) The first and the $6^{\text {th }}$ of a geometric progression are $\frac{5}{2}$ and $\frac{1215}{2}$. Find the value of r.
$a_{1}=\frac{5}{2}$ and $a_{6}=\frac{1215}{2} \rightarrow a_{6}=a_{1} \times r^{5} \Rightarrow \frac{1215}{2}=\frac{5}{2} \times r^{5}$
$r^{5}=\frac{1215}{2} \div \frac{5}{2}=243 \Rightarrow r=\sqrt[5]{243}=\sqrt[5]{3^{5}} \Rightarrow r=3$
9) Find the sum to infinity of the geometric progression: $81,-27,9, \ldots . .$.

It is a GP with $r=-\frac{1}{3} \quad S=\frac{a_{1}}{1-r}=\frac{81}{1+\frac{1}{3}}=\frac{81}{\frac{4}{3}}=\frac{81 \times 3}{4}=\frac{243}{4}$
10) The sum to infinity in a geometric progression is 200 . Given that the first term is 52 . Find the common ratio, r.
$S=\frac{a_{1}}{1-r}=200 \rightarrow \frac{52}{1-r}=200 \Rightarrow 52=200 \times(1-r) \Rightarrow 52=200-200 r$
$52-200=-200 r \Rightarrow 200 r=148 \Rightarrow r=\frac{148}{200}=\frac{37}{50}$

