PYTHAGORAS' THEOREM

1. Find out the length of the legs on the following triangle:

2. There is a building with a 12 m high window. You want to use a ladder to go up to the window, and you decide to keep the ladder 5 m away from the building to have a good slant. How long should the ladder be?
3. The perimeter of an isosceles trapezoid is 110 m and the bases are 40 and 30 m in length. Calculate the length of the non-parallel sides of the trapezoid and its area.
4. Determine the side of an equilateral triangle whose perimeter is equal to a square of side 12 cm . Are their areas equal?
5. Determine the length of the diagonal of a square with sides of length 12 m .
6. Find the area of the rectangular rug if the width is 3 metres and the diagonal measures 5 metres.

7. A window frame that seems rectangular has height 408 cm , length 306 cm , and one diagonal with length 525 cm . Is the window frame really rectangular? Explain.
8. Find the area of a right triangle with hypotenuse length 17 cm and one leg length 15 cm .
9. A chord of 48 cm is 7 cm from the centre of a circle. Calculate the area of the circle.
10. Natalie left her house and walked 2 blocks east. She turned and walked 5 blocks north to get to the library. If each block if $\frac{1}{4}$ of mile, how far is the direct route from Natalie's house to the library?

SOLUTION

1.

$10^{2}=x^{2}+(2 x)^{2} \rightarrow 100=x^{2}+4 x^{2}=5 x^{2}$
$x^{2}=\frac{100}{5}=20 \rightarrow x=\sqrt{20}=4.47$
legs: 4.47 cm and 8.94 cm

2.

$$
\begin{aligned}
& x^{2}=12^{2}+5^{2}=144+25 \\
& x=\sqrt{169}=13 \mathrm{~m}
\end{aligned}
$$

The ladder should be 13 m long

3.

$$
110=40+30+2 x \rightarrow 2 x=110-70=40
$$

$$
x=\frac{40}{2}=20 m
$$

$$
h^{2}=20^{2}-5^{2}=400-25=375
$$

$$
h=\sqrt{375}=19.36 \mathrm{~m}
$$

$$
A=\frac{(30+40)}{2} \cdot 19.36=677.6 \mathrm{~m}^{2}
$$

4. $P=4 \cdot 12=48 \mathrm{~cm} \rightarrow 48: 3=16 \mathrm{~cm}$ each side of the triangle
$h^{2}=16^{2}-8^{2}=192 \rightarrow h=\sqrt{192}=13.86 \mathrm{~cm}$
Square:
$A=12^{2}=144 \mathrm{~cm}^{2}$
Triangle:
$A=\frac{16 \cdot 13.86}{2}=110.85 \mathrm{~cm}^{2}$

The areas are not equal
5. $d^{2}=12^{2}+12^{2}=288$
$d=\sqrt{288}=16.97 \mathrm{~m}$

The diagonal is 16.97 m long

6. Find the area of the rectangular rug if the width is 3 metres and the diagonal measures 5 metres.
$x^{2}=5^{2}-3^{2}=16$
$x=\sqrt{16}=4$
$A=4 \cdot 3=12 \mathrm{~m}^{2}$

7. A window frame that seems rectangular has height 408 cm , length 306 cm , and one diagonal with length 525 cm . Is the window frame really rectangular? Explain. If the frame is rectangular it has to be $525^{2}=408^{2}+306^{2}$
$275625 \neq 166464+93636=260100$
So, the windows frame is not rectangular.
8.
$x^{2}=17^{2}-15^{2}=64 \rightarrow x=8 \mathrm{~cm}$
$A=\frac{15 \cdot 8}{2}=60 \mathrm{~cm}^{2}$

9.
$r^{2}=24^{2}+7^{2}=625 \rightarrow r=\sqrt{625}=25$
$A=\pi \cdot r^{2}=\pi \cdot 25^{2}=1963.5 \mathrm{~cm}^{2}$

10. Natalie left her house and walked 2 blocks east. She turned and walked 5 blocks north to get to the library. If each block if $\frac{1}{4}$ of mile, how far is the direct route from Natalie's house to the library?
$2 \cdot \frac{1}{4}=0.5$ miles ; $5 \cdot \frac{1}{4}=1.25$ miles
$x^{2}=1.25^{2}+0.5^{2}=2.203125$
$x=\sqrt{2.203125}=1.48$ miles
The library is 1.48 miles from Natalie's house

