COORDINATE GEOMETRY 1

1.- Find the equation of these straight lines
a) The line through $(-2,1)$ and slope -2 .
b) The line through $(2,-1)$, parallel to $y=2 x+1$
c) The line through $(1,-1)$ that makes an angle of 45° with x-axis.
d) The line through $(1,0)$ and $(-3,2)$.
2. Find the midpoint, length and slope of the line joining the points A and
B, leave your answers as a surd
a) $A=(1,16), B=(3,10)$
b) $A=(4,-2), B=(-5,1)$
3. Find the equation of these straight lines
a) The line through $(1,2)$, parallel to $3 x+y=2$
b) The line through $(5,10)$, perpendicular to $2 x-y=7$
4. The line r passes through the points $A(0,-2)$ and $B(6,7)$
a) Find the equation of r.
b) The line s has equation $x+y=8, s$ crosses the x-axis at C and the y-axis
at D. Find the coordinates of C and D.
c) r and s meet at point E. Find the coordinates of E.
5. Write the equation of a line which has a graph which is parallel to the line $y=2 x+8 y$ and contains the point $(5,5)$.
6. Find the relative position of lines r and s :
a) $\left.\begin{array}{r}r \equiv 2 x-3 y=1 \\ s \equiv x+2 y=-3\end{array}\right\}$
b) $\left.\begin{array}{rl}r & \equiv y=2 x+3 \\ s & \equiv 2 y-4 x=6\end{array}\right\}$
c) $\left.\begin{array}{rl}r & \equiv 2 x-3 y=1 \\ s \equiv 9 y-6 x=2\end{array}\right\}$

SOLUTION

1.- Find the equation of these straight lines
a) The line through $(-2,1)$ and slope -2 .

$$
y-1=-2(x+2) \rightarrow y=-2 x-3
$$

b) The line through $(2,-1)$, parallel to $y=2 x+1$

$$
\text { parallel } \rightarrow \text { slope } \quad m=2
$$

$$
y+1=2(x-2) \rightarrow y=2 x-5
$$

c) The line through $(1,-1)$ that makes an angle of 45° with x-axis.

$$
45^{\circ} \text { with the } x \text {-axis (two possibilities) } \rightarrow \text { slope } m= \pm 1
$$

$$
y+1=1(x-1) \rightarrow y=x-2 ; y+1=-1(x-1) \rightarrow y=-x
$$

d) The line through $(1,0)$ and $(-3,2)$.

$$
\frac{x-1}{-3-1}=\frac{y-2}{0-2} \rightarrow \frac{x-1}{-4}=\frac{y-2}{-2} \rightarrow 4 y+2 x-1=0
$$

2. Find the midpoint, length and slope of the line joining the points A and
B, leave your answers as a surd
a) $A=(1,16), B=(3,10)$
$d(A, B)=\sqrt{(3-1)^{2}+(10-16)^{2}}=\sqrt{40}=2 \sqrt{10} u$
b) $A=(4,-2), B=(-5,1)$
$d(A, B)=\sqrt{(-5-4)^{2}+(1+2)^{2}}=\sqrt{89} u$
3. Find the equation of these straight lines
a) The line through (1,2), parallel to $3 x+y=2 \rightarrow y=-3 x+2$

$$
\text { parallel } \rightarrow \text { slope } \quad m=-3 ; \quad y-2=-3(x-1) \rightarrow y=-3 x+5
$$

b) The line through $(5,10)$, perpendicular to $2 x-y=7 \rightarrow y=2 x-7$

$$
\begin{aligned}
& \text { perpendicular } \rightarrow \text { slope } m=-\frac{1}{2} \\
& y-10=-\frac{1}{2}(x-5) \rightarrow y=-\frac{1}{2} x+\frac{5}{2}+10 \rightarrow y=-\frac{1}{2} x+\frac{25}{2}
\end{aligned}
$$

4. The line r passes through the points $A(0,-2)$ and $B(6,7)$
a) Find the equation of r.
$\frac{x-0}{6-0}=\frac{y+2}{7+2} \rightarrow \frac{x}{6}=\frac{y+2}{9} \rightarrow 9 x=6 y+12 \rightarrow 3 x-2 y=6$
b) The line s has equation $x+y=8, s$ crosses the x-axis at C and the y-axis at D. Find the coordinates of C and D.
$\left.\left.\begin{array}{l}x+y=8 \\ x=0\end{array}\right\} \rightarrow y=8 \Rightarrow D(0,8) ; \begin{array}{l}x+y=8 \\ y=0\end{array}\right\} \rightarrow x=8 \Rightarrow C(8,0)$
c) r and s meet at point E. Find the coordinates of E.
$\left.\left.\begin{array}{l}x+y=8 \\ 3 x-2 y=6\end{array}\right\} \rightarrow \begin{array}{l}2 x+2 y=16 \\ 3 x-2 y=6\end{array}\right\} \rightarrow 5 x=22 \rightarrow x=\frac{22}{5} \rightarrow y=8-\frac{22}{5}=\frac{18}{5}$
$E\left(\frac{22}{5}, \frac{18}{5}\right)$
5. Write the equation of a line which has a graph which is parallel to the line $y=2 x+8 y$ and contains the point $(5,5)$.
parallel \rightarrow slope $\quad m=2 \rightarrow y-5=2(x-5) \rightarrow y=2 x-5$
6. Find the relative position of lines r and s.
a) $\left.\begin{array}{rl}r \equiv 2 x-3 y=1 \\ s \equiv x+2 y=-3\end{array}\right\} \rightarrow x=-2 y-3 \rightarrow 2(-2 y-3)-3 y=1 \rightarrow-7 y-6=1 \rightarrow y=-1, x=-1$ the lines intersect at the point $(-7,-5)$
b) $\left.\begin{array}{l}r \equiv y=2 x+3 \\ s \equiv 2 y-4 x=6\end{array}\right\} \rightarrow 2(2 x+3)-4 x=6 \rightarrow 0 x=0 \quad r$ and s are the same line
c) $\left.\left.\begin{array}{l}r \equiv 2 x-3 y=1 \\ s \equiv 9 y-6 x=2\end{array}\right\} \rightarrow \begin{array}{l}6 x-9 y=3 \\ -6 x+9 y=2\end{array}\right\} 0 x=5 r$ and s are parallel lines
