COORDINATE GEOMETRY

1. Find the equation of the straight line through the point $A(-1,1)$ and perpendicular to line $y=-3 x+1$.
2. With point $A(2,3)$ and straight line $r: 2 x-3 y+4=0$
a) Write the equation of a line parallel to r and joining the point A.
b) Write the equation of a line perpendicular to r and joining the point A.
3. Plot these points and label each with the correct letter:

$$
A=(2,3) B=(5,12) C=(10,5)
$$

a) Draw triangle $A B C$.
b) Write the coordinates of the midpoint of $\overline{A C}$.
c) Find the length, correct to the nearest hundredth, of the median from B to $\overline{A C}$.
d) Write a correct equation for the line which contains the altitude from B to $\overline{A C}$.
4. Write the equation of the perpendicular bisector of $\overline{A B}$, with $A(-2,0)$ y $B(2,4)$.
5. With points $A(-1,3), B(3,1)$ y $C(-3,-2)$
a) Write the equation of the perpendicular bisector of $\overline{A B}$.
b) Write the equation of a line parallel to $\overline{A B}$ and joining the point C.
6. What is the centre and radius of each circle?
a) $x^{2}+(y+1)^{2}=9$
b) $(x+2)^{2}+(y-3)^{2}=8$
c) $(x-4)^{2}+y^{2}=6$
d) $4 x^{2}+4 y^{2}=1$
7. Find the equation of the circle with the given centre and radius.
a) Centre ($-1,-1$) and radius 3 .
b) Centre $(0,-2)$ and radius $\sqrt{5}$ and radius.
c) Centre $(-3,3)$ and radius 1 .

SOLUTION

1. Find the equation of the straight line through the point $A(-1,1)$ and perpendicular to line $y=-3 x+1$.
$y=-3 x+1 \rightarrow m=-3$, so perpendicular line has a slope of $m^{\prime}=\frac{1}{3}$
Equation: $y-1=\frac{1}{3}(x+1) \rightarrow y=\frac{1}{3} x+\frac{4}{3}$
2. With point $A(2,3)$ and straight line $r: 2 x-3 y+4=0$
a) Write the equation of a line parallel to r and joining the point \boldsymbol{A}.
$r: 2 x-3 y+4=0 \rightarrow y=\frac{2}{3} x+\frac{4}{3} \rightarrow m=\frac{2}{3}$
Parallel line: $y-3=\frac{2}{3}(x-2) \rightarrow y=\frac{2}{3} x+\frac{5}{3}$
b) Write the equation of a line perpendicular to r and joining the point A.

Perpendicular line: $m^{\prime}=-\frac{3}{2} \rightarrow y-3=-\frac{3}{2}(x-2) \rightarrow y=-\frac{3}{2} x+6$
3. Plot these points and label each with the correct letter:

$$
A=(2,3) B=(5,12) C=(10,5)
$$

a) Draw triangle $A B C$.
b) Write the coordinates of the midpoint of $\overline{A C}$.

$M\left(\frac{2+10}{2}, \frac{3+5}{2}\right) \rightarrow M(6,4)$
c) Find the length, correct to the nearest
hundredth, of the median from B to $\overline{A C}$.
$d(B, M)=\sqrt{(6-5)^{2}+(4-12)^{2}}=\sqrt{1+64}=8.06 u$
d) Write a correct equation for the line which contains the altitude from B to $\overline{A C}$. The altitude is perpendicular to the line $\overline{A C}$, we calculate the slope of $\overline{A C}: m=\frac{5-3}{10-2}=\frac{2}{8}=\frac{1}{4}$ so the slope of the altitude is $\mathrm{m}^{\prime}=-4$
Equation of altitude : Point $B=(5,12)$, slope

$m^{\prime} \rightarrow y-12=-4(x-5)$
$y=-4 x+20+12 \rightarrow y=-4 x+32$
4. Write the equation of the perpendicular bisector of $\overline{A B}$, with $A(-2,0)$ y $B(2,4)$.
Midpoint of $\overline{A B}: M\left(\frac{-2+2}{2}, \frac{0+4}{2}\right)=(0,2)$
Slope of $\overline{A B}: m=\frac{4-0}{2+2}=1 \rightarrow$ slope perpendicular bisector: $m^{\prime}=-1$

$$
y-2=-1(x-0) \rightarrow y=-x+2
$$

5. With points $A(-1,3), B(3,1)$ y $C(-3,-2)$
a) Write the equation of the perpendicular bisector of $\overline{A B}$.

Midpoint of $\overline{A B}: M\left(\frac{-1+3}{2}, \frac{3+1}{2}\right)=(1,2)$
Slope of $\overline{A B}: m=\frac{1-3}{3+1}=-\frac{2}{4}=-\frac{1}{2} \rightarrow$ slope perpendicular bisector: $m^{\prime}=2$
$y-2=2(x-1) \rightarrow y=2 x$
b) Write the equation of a line parallel to $\overline{A B}$ and joining the point C.

Parallel to $\overline{A B} \rightarrow m=-\frac{1}{2} \rightarrow y+2=-\frac{1}{2}(x+3) \rightarrow y=-\frac{1}{2} x-\frac{7}{2}$
6. What is the centre and radius of each circle?
a) $x^{2}+(y+1)^{2}=9 \rightarrow$ Centre $(0,-1)$, radius $\sqrt{9}=3$
b) $(x+2)^{2}+(y-3)^{2}=8 \rightarrow$ Centre $(-2,3)$, radius $\sqrt{8}=2 \sqrt{2}$
c) $(x-4)^{2}+y^{2}=6 \rightarrow$ Centre $(4,0)$, radius $\sqrt{6}$
d) $4 x^{2}+4 y^{2}=1 \rightarrow$ Centre $(0,0)$, radius $\sqrt{\frac{1}{4}}=\frac{1}{2}$
7. Find the equation of the circle with the given centre and radius.
a) Centre $(-1,-1)$ and radius $3 \rightarrow(x+1)^{2}+(y+1)^{2}=9$
b) Centre $(0,-2)$ and radius $\sqrt{5}$ and radius $\rightarrow x^{2}+(y+2)^{2}=5$
c) Centre $(-3,3)$ and radius $1 \rightarrow(x+3)^{2}+(y-3)^{2}=1$

