FUNCTIONS 3

1. Draw the graph of the inversely proportional function $f(x)=\frac{18}{x}$
a) Domain and Range
b) Asymptotes
c) Intervals of increasing
d) Continuity
e) Sketch the function $g(x)=\frac{18}{x}+5$. Asymptotes?
2. Draw the graph of the inversely proportional function $f(x)=-\frac{4}{x}$
a) Domain and Range
b) Asymptotes
c) Intervals of increasing
d) Continuity
e) Sketch the function $g(x)=-\frac{4}{x-2}$. Asymptotes?
3. A person purchases 20 chocolates at $\$ 5$ each. With the same amount how many chocolates can be purchased at $\$ 10$ each?
a) Analyse and describe the type of relation cost per chocolates and the number of chocolates.
b) Graph the function.
4. Graph the functions:
a) $f(x)=2^{x}+3$
b) $g(x)=2^{x-4}$
5. Graph the functions:
a) $f(x)=\left(\frac{1}{3}\right)^{x}-2$
b) $g(x)=\left(\frac{1}{3}\right)^{x+3}$

SOLUTION

1. Draw the graph of the inversely proportional function $f(x)=\frac{18}{x}$
It is a curve called hyperbola
a) Domain and Range $D(f)=\mathfrak{R}-\{0\}$ $R(f)=\Re-\{0\}$
b) Asymptotes: x-axe and y-axe
($y=0$ and $x=0$)
c) Intervals of increasing

Decrease $(-\infty, 0) \cup(0,+\infty)$
d) Continuity: f is continuous in $\mathfrak{R}-\{0\}$
e) Sketch the function $g(x)=\frac{18}{x}+5$.

Asymptotes? $g(x)=f(x)+5$
It moves the graphs up the y-axis by the value of 5
Asymptotes: $y=5$ and $x=0$
2. Draw the graph of the inversely proportional function $f(x)=-\frac{4}{x}$
It is a curve called hyperbola
a) Domain and Range $D(f)=\mathfrak{R}-\{0\}$ $R(f)=\mathfrak{R}-\{0\}$
b) Asymptotes: x-axe and y-axe
($y=0$ and $x=0$)
c) Intervals of increasing

Increase $(-\infty, 0) \cup(0,+\infty)$
d) Continuity: f is continuous in $\mathfrak{R}-\{0\}$

e) Sketch the function $g(x)=-\frac{4}{x-2}$
$g(x)=f(x-2)$ moves the graphs 2 units to the right.
Asymptotes: $\mathrm{y}=0$ and $\mathrm{x}=2$

3. A person purchases 20 chocolates at $\$ 5$ each. With the same amount how many chocolates can be purchased at $\$ 10$ each? He can purchase 10 chocolates
a) Analyse and describe the type of relation cost per chocolates and the number of chocolates.

Cost/chocolate	1	2	4	5	10
Number of chocolates	100	50	25	20	10

It is a inverse proportion function, formula $y=\frac{100}{x}$
b) Graph the function.

4. Graph the functions:
a) $f(x)=2^{x}+3$ exponential function, the graph is as $f(x)=2^{x}$, but it is up the y axis by the value of 3 units
b) $g(x)=2^{x-4}$ exponential function, the graph is as $f(x)=2^{x}$, but it is 4 units to the right.
$f(x)=2^{x}$ (black) : $f(x)=2^{x}+3$ (blue); $g(x)=2^{x-4}$ (purple)

5. Graph the functions:
a) $f(x)=\left(\frac{1}{3}\right)^{x}-2$ exponential function with base <1, the graph is as $f(x)=\left(\frac{1}{3}\right)^{x}$, but it is down the y-axis by the value of 2 units
b) $g(x)=\left(\frac{1}{3}\right)^{x+3}$ exponential function with base <1, the graph is as $f(x)=\left(\frac{1}{3}\right)^{x}$, but it is 3 units to the left.
$f(x)=\left(\frac{1}{3}\right)^{x}$ (red); $f(x)=\left(\frac{1}{3}\right)^{x}-2$ (blue); $g(x)=\left(\frac{1}{3}\right)^{x+3}$ (green)

