FUNCTIONS 3

- 1. Draw the graph of the inversely proportional function $f(x) = \frac{18}{x}$
 - a) Domain and Range
 - b) Asymptotes
 - c) Intervals of increasing
 - d) Continuity
 - e) Sketch the function $g(x) = \frac{18}{x} + 5$. Asymptotes?
- 2. Draw the graph of the inversely proportional function $f(x) = -\frac{4}{x}$
 - a) Domain and Range
 - b) Asymptotes
 - c) Intervals of increasing
 - d) Continuity
 - e) Sketch the function $g(x) = -\frac{4}{x-2}$. Asymptotes?
- 3. A person purchases 20 chocolates at \$5 each. With the same amount how many chocolates can be purchased at \$10 each?
 - a) Analyse and describe the type of relation cost per chocolates and the number of chocolates.
 - b) Graph the function.
- 4. Graph the functions:

a)
$$f(x) = 2^x + 3$$

b)
$$g(x) = 2^{x-4}$$

5. Graph the functions:

a)
$$f(x) = \left(\frac{1}{3}\right)^x - 2$$

b)
$$g(x) = \left(\frac{1}{3}\right)^{x+3}$$

SOLUTION

1. Draw the graph of the inversely proportional function $f(x) = \frac{18}{x}$

It is a curve called hyperbola

a) Domain and Range $D(f) = \Re - \{0\}$

$$R(f) = \Re - \{0\}$$

- b) Asymptotes: x-axe and y-axe
- (y = 0 and x = 0)
- c) Intervals of increasing

Decrease $(-\infty,0) \cup (0,+\infty)$

d) Continuity: f is continuous in $\Re -\{0\}$

Asymptotes? g(x) = f(x) + 5

It moves the graphs up the y-axis by the value of 5

Asymptotes: y = 5 and x = 0

2. Draw the graph of the inversely proportional function $f(x) = -\frac{4}{x}$

It is a curve called hyperbola

a) Domain and Range $D(f) = \Re - \{0\}$

$$R(f) = \Re - \{0\}$$

b) Asymptotes: x-axe and y-axe

$$(y = 0 \text{ and } x = 0)$$

c) Intervals of increasing

Increase $(-\infty,0) \cup (0,+\infty)$

d) Continuity: f is continuous in $\Re -\{0\}$

e) Sketch the function $g(x) = -\frac{4}{x-2}$

Asymptotes: y = 0 and x = 2

- 3. A person purchases 20 chocolates at \$5 each. With the same amount how many chocolates can be purchased at \$10 each? He can purchase 10 chocolates
- a) Analyse and describe the type of relation cost per chocolates and the number of chocolates.

Cost/chocolate	1	2	4	5	10
Number of	100	50	25	20	10
chocolates	100	50	23	20	10

It is a inverse proportion function, formula $y = \frac{100}{x}$

b) Graph the function.

- 4. Graph the functions:
- a) $f(x) = 2^x + 3$ exponential function, the graph is as $f(x) = 2^x$, but it is up the y-axis by the value of 3 units
- b) $g(x)=2^{x-4}$ exponential function, the graph is as $f(x)=2^x$, but it is 4 units to the right.

$$f(x) = 2^{x}$$
 (black); $f(x) = 2^{x} + 3$ (blue); $g(x) = 2^{x-4}$ (purple)

5. Graph the functions:

a)
$$f(x) = \left(\frac{1}{3}\right)^x - 2$$
 exponential function with base <1, the graph is as $f(x) = \left(\frac{1}{3}\right)^x$,

but it is down the y-axis by the value of 2 units

b)
$$g(x) = \left(\frac{1}{3}\right)^{x+3}$$
 exponential function with base <1, the graph is as $f(x) = \left(\frac{1}{3}\right)^x$,

but it is 3 units to the left.

$$f(x) = \left(\frac{1}{3}\right)^x \text{ (red)}; \ f(x) = \left(\frac{1}{3}\right)^x - 2 \text{ (blue)}; \ g(x) = \left(\frac{1}{3}\right)^{x+3} \text{ (green)}$$