LOGARITHMIC FUNCTION

- 1. Sketch these graphs. Find their intersections with the x-axis and the yaxis, if possible, their domains, ranges and asymptotes:
 - a) $\gamma = \log_2 x$
 - b) $y = -log_2 x$
 - c) $\gamma = \log_{1/2} x$
 - d) $y = log_2 x + 2$
 - e) $y = log_2(x+1)$
 - f) $y = 3 \log_2 x$
- 2. Use the logarithmic definition to work out the value of x:
 - a) $log_2 x = 3$
 - b) $log_{3}9 = x$
 - c) $\log_{1/2} x = -1$
 - d) $log_2 x = -3$
 - e) $log_{x} 16 = 4$
 - f) $log_{1/3} 1 = x$
 - g) $log_{x} \frac{1}{25} = -2$
 - h) $log_{3} x = 3$
 - i) $log_2 x = -4$
 - j) $log_5 125 = x$
 - k) *log* 1000000 = x

SOLUTION

3. Sketch these graphs. Find their intersections with the x-axis and the yaxis, if possible, their domains, ranges and asymptotes:

- e) $y = log_2(x+1)$ intersection with axis (0,0) Domain $D = (0, +\infty)$ Range $R = (-\infty, +\infty)$ Vertical asymptote x = -1The graph is the same as $y = log_2 \times 1$ unit to the left f) $y = 3 log_2 \times$ intersection with x-axis (1,0) Domain $D = (0, +\infty)$ Range $R = (-\infty, +\infty)$ Vertical asymptote x = 0
- 4. Use the logarithmic definition to work out the value of x:
- a) $log_2 x = 3 \Leftrightarrow 2^3 = x \Longrightarrow x = 8$
- b) $log_3 9 = x \Leftrightarrow 3^x = 9 \Longrightarrow x = 2$
- c) $\log_{1/2} x = -1 \Leftrightarrow \left(\frac{1}{2}\right)^{-1} = x \Rightarrow 2^{1} = x \Rightarrow x = 2$
- d) $log_2 x = -3 \Leftrightarrow 2^{-3} = x \Rightarrow \frac{1}{2^3} = x \Rightarrow x = \frac{1}{8}$
- e) $log_x 16 = 4 \Leftrightarrow x^4 = 16 \Rightarrow x^4 = 2^4 \Rightarrow x = 2$
- f) $\log_{1/3} 1 = x \Leftrightarrow \left(\frac{1}{3}\right)^x = 1 \Rightarrow x = 0$

g)
$$\log_{x} \frac{1}{25} = -2 \Rightarrow x^{-2} = \frac{1}{25} \Rightarrow \frac{1}{x^{2}} = \frac{1}{25} \Rightarrow x = 5$$

- h) $log_3 x = 3 \Leftrightarrow 3^3 = x \Longrightarrow x = 27$
- i) $\log_2 x = -4 \Leftrightarrow 2^{-4} = x \Rightarrow x = \frac{1}{16}$
- j) $log_5 125 = x \Leftrightarrow 5^{\times} = 125 \Longrightarrow x = 3$
- k) *log* $1000000 = x \Leftrightarrow 10^{\times} = 1000000 \Rightarrow x = 6$