TRIGONOMETRY 2

1. Draw two angles whose cosine is $2 / 3$
2. Use your calculator to determine the following, correct to 4 decimal places:
a) $\sin 72^{\circ}$
b) $\cos 38^{\circ}$
c) $\tan 127^{\circ}$
d) $\sin 12^{\circ} 23^{\prime}$
e) $\tan 23^{\circ} 5^{\prime}$
f) $\cos 94^{\circ}$
g) $\sin 56^{\circ} 55^{\prime}$
h) $\tan 9^{\circ} 9^{\prime}$
3. Use your calculator to determine the angle α (degrees and minutes):
a) $\sin \alpha=0.37$
b) $\cos \alpha=-0.23$
c) $\tan \alpha=1.27$
d) $\sin \alpha=-0.83$
e) $\tan \alpha=23$
f) $\cos \alpha=0.87$
g) $\sin \alpha=0.55$
h) $\tan \alpha=1.8$
4. A ladder of length 6 m leans against a vertical wall. The angle between the ladder and the horizontal is 70°. Calculate the height of the top of the ladder.
5. A right triangle has sides of length 5,12 and 13 cm . Calculate (degrees and minutes) the sizes of the angles in this triangle.
6. A isosceles triangle has two sides of length 6 cm and the angle between these sides is 42°. Calculate the length of the unequal side.
7. A little boy is flying a kite. The string of the kite makes an angle of 30° with the ground. If the height of the kite is $h=21 \mathrm{~m}$, find the length of the string that the boy has used.
8. Two men on opposite sides of a TV tower of height 24 m notice the angle of elevation of the top of this tower to be 45° and 60° respectively. Find the distance between the two men.
9. Two men on the same side of a tall building notice the angle of elevation to the top of the building to be 30° and 60° respectively. If the height of the building is known to be $h=50 \mathrm{~m}$, find the distance between the two men.
10. A rectangle has sides of length 12 cm and $x \mathrm{~cm}$. The acute angle between the diagonal of the rectangle is 40°. Determine x.

SOLUTION

1. Draw two angles whose cosine is $2 / 3$

2. Use your calculator to determine the following, correct to 4 decimal places:
a) $\sin 72^{\circ}=0.9511$
b) $\cos 38^{\circ}=0.7880$
c) $\tan 127^{\circ}=-1.3270$
d) $\sin 12^{\circ} 23^{\prime}=0.2145$
e) $\tan 23^{\circ} 5^{\prime}=0.4262$
f) $\cos 94^{\circ}=-0.0698$
g) $\sin 56^{\circ} 55^{\prime}=0.8379$
h) $\tan 9^{\circ} 9^{\prime}=0.1611$
3. Use your calculator to determine the angle α (degrees and minutes):
a) $\sin \alpha=0.37 \rightarrow \alpha=21^{\circ} 43^{\prime}$
b) $\cos \alpha=-0.23 \rightarrow \alpha=103^{\circ} 18^{\prime}$
c) $\tan \alpha=1.27 \rightarrow \alpha=51^{\circ} 47^{\prime}$
d) $\sin \alpha=-0.83 \rightarrow \alpha=303^{\circ} 54^{\prime}$
e) $\tan \alpha=23 \rightarrow \alpha=87^{\circ} 31^{\prime}$
f) $\cos \alpha=0.87 \rightarrow \alpha=29^{\circ} 32^{\prime}$
g) $\sin \alpha=0.55 \rightarrow \alpha=33^{\circ} 22^{\prime}$
h) $\tan \alpha=1.8 \rightarrow \alpha=60^{\circ} 57^{\prime}$
4. A ladder of length 6 m leans against a vertical wall. The angle between the ladder and the horizontal is 70°. Calculate the height of the top of the ladder.
$\sin 70^{\circ}=\frac{x}{6} \Rightarrow x=6 \times \sin 70^{\circ}=5.64$ metres

5. A right triangle has sides of length 5,12 and 13 cm . Calculate (degrees and minutes) the sizes of the angles in this triangle.

$$
\begin{aligned}
& \hat{A}=90^{\circ} \\
& \sin \hat{B}=\frac{5}{13} \Rightarrow \hat{B}=22^{\circ} 37^{\prime} \\
& \sin \hat{C}=\frac{12}{13} \Rightarrow \hat{C}=67^{\circ} 23^{\prime}
\end{aligned}
$$

6. An isosceles triangle has two sides of length 6 cm and the angle between these sides is 42°. Calculate the length of the unequal side.
$\sin 21^{\circ}=\frac{x}{6} \Rightarrow x=6 \times \sin 21^{\circ}=2.15 \mathrm{~cm}$
The unequal side is 4.30 cm long

7. A little boy is flying a kite. The string of the kite makes an angle of 30° with the ground. If the height of the kite is $h=21 \mathrm{~m}$, find the length of the string that the boy has used.

$\sin 30^{\circ}=\frac{21}{x} \Rightarrow x \sin 30^{\circ}=21$
$x=\frac{21}{\sin 30^{\circ}}=42$ metres
8. Two men on opposite sides of a TV tower of height 24 m notice the angle of elevation of the top of this tower to be 45° and 60° respectively. Find the distance between the two men.
$\tan 60^{\circ}=\frac{24}{x} \Rightarrow x=\frac{24}{\tan 60^{\circ}}=13.86 \mathrm{~m}$
$\tan 45^{\circ}=\frac{24}{y} \Rightarrow y=\frac{24}{\tan 45^{\circ}}=24 \mathrm{~m}$
The distance between the two men is:
13.86+24=37.86 metres

9. Two men on the same side of a tall building notice the angle of elevation to the top of the building to be 30° and 60° respectively. If the height of the building is known to be $h=50 \mathrm{~m}$, find the distance between the two men.
$\tan 30^{\circ}=\frac{50}{y} \Rightarrow y=\frac{50}{\tan 30^{\circ}}=86.60 \mathrm{~m}$

$\tan 60^{\circ}=\frac{50}{x} \Rightarrow x=\frac{50}{\tan 60^{\circ}}=28.87 \mathrm{~m}$
The distance between the two men is $86.60-28.87=57.73$ metres
10. A rectangle has sides of length 12 cm and $x \mathrm{~cm}$. The acute angle between the diagonal of the rectangle is 40°. Determine x.

$\tan 20^{\circ}=\frac{x}{12} \Rightarrow x=12 \times \tan 20^{\circ}=4.37 \mathrm{~cm}$
