TRIGONOMETRY 3

1. Suppose that $\cos \alpha=-\frac{3}{5}$ and α lies in quadrant II. Find the other trigonometric ratios for α.
2. Suppose that $\sin \alpha=\frac{\sqrt{2}}{5}$ and α lies in quadrant I. Find the other trigonometric ratios for α.
3. Suppose that $\tan \alpha=\frac{2}{3}$ and α lies in quadrant III. Find the other trigonometric ratios for α.
4. Find the exact value of $\sin 315^{\circ}$.
5. Find the exact value of $\tan 210^{\circ}$.
6. Find the exact value of $\cos 135^{\circ}$.
7. Two men on opposite sides of a TV tower of height 24 m notice the angle of elevation of the top of this tower to be 45° and 60° respectively. Find the distance between the two men.
8. Two men on the same side of a tall building notice the angle of elevation to the top of the building to be 30° and 60° respectively. If the height of the building is known to be $h=50 \mathrm{~m}$, find the distance between the two men.
9. A rectangle has sides of length 12 cm and $x \mathrm{~cm}$. The acute angle between the diagonal of the rectangle is 40°. Determine x.
10. A 5.2 m ladder leans against a wall. The bottom of the ladder is 1.9 m from the wall. What angle does the ladder make with the ground?

SOLUTION

1. Suppose that $\cos \alpha=-\frac{3}{5}$ and α lies in quadrant II. Find the other trigonometric ratios for α.
In quadrant II, $\sin \alpha>0, \cos \alpha<0, \tan \alpha<0$
$\sin ^{2} \alpha+\cos ^{2} \alpha=1 \Rightarrow \sin ^{2} \alpha=1-\cos ^{2} \alpha=1-\frac{9}{25}=\frac{16}{25} \rightarrow \sin \alpha=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{\frac{4}{5}}{-\frac{3}{5}}=-\frac{4}{3}$
2. Suppose that $\sin \alpha=\frac{\sqrt{2}}{5}$ and α lies in quadrant I. Find the other trigonometric ratios for α.
In quadrant I, $\sin \alpha>0, \cos \alpha>0, \tan \alpha>0$
$\sin ^{2} \alpha+\cos ^{2} \alpha=1 \Rightarrow \cos ^{2} \alpha=1-\sin ^{2} \alpha=1-\frac{2}{25}=\frac{23}{25} \rightarrow \cos \alpha=\sqrt{\frac{23}{25}}=\frac{\sqrt{23}}{5}$
$\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{\frac{\sqrt{2}}{5}}{\frac{\sqrt{23}}{5}}=\frac{\sqrt{2}}{\sqrt{23}}=\frac{\sqrt{46}}{23}$
3. Suppose that $\tan \alpha=\frac{2}{3}$ and α lies in quadrant III. Find the other trigonometric ratios for α.
In quadrant III, $\sin \alpha<0, \cos \alpha<0, \tan \alpha>0$

$$
\begin{aligned}
& 1+\tan ^{2} \alpha=\frac{1}{\cos ^{2} \alpha} \Rightarrow 1+\frac{4}{9}=\frac{1}{\cos ^{2} \alpha} \rightarrow \cos ^{2} \alpha=\frac{9}{13} \rightarrow \cos \alpha=-\sqrt{\frac{9}{13}}=-\frac{3 \sqrt{13}}{13} \\
& \sin ^{2} \alpha+\cos =1 \Rightarrow \sin ^{2} \alpha=1-\frac{9}{13}=\frac{4}{13} \rightarrow \sin \alpha=-\sqrt{\frac{4}{13}}=-\frac{2 \sqrt{13}}{13}
\end{aligned}
$$

4. Find the exact value of $\sin 315^{\circ}$.

The terminal side of the angle 315° is in the $4^{\text {th }}$ quadrant, so $360^{\circ}-315^{\circ}=45^{\circ}$
45° is the reference angle, also \sin is negative in the $4^{\text {th }}$
Thus, $\sin 315^{\circ}=-\sin 45^{\circ}=-\frac{\sqrt{2}}{2}$
5. Find the exact value of $\tan 210^{\circ}$.

The terminal side of the angle 210° is in the $3^{\text {rd }}$ quadrant, so $210^{\circ}-180^{\circ}=30^{\circ}$
30° is the reference angle, also tan is positive in the $3^{\text {rd }}$
Thus, $\tan 210^{\circ}=\tan 30^{\circ}=\frac{\sqrt{3}}{3}$
6. Find the exact value of $\cos 135^{\circ}$.

The terminal side of the angle 135° is in the $2^{\text {nd }}$ quadrant, so $180^{\circ}-135^{\circ}=45^{\circ}$ 45° is the reference angle, also cos is negative in the $2^{\text {nd }}$
Thus, $\cos 135^{\circ}=-\cos 45^{\circ}=-\frac{\sqrt{2}}{2}$
7. Two men on opposite sides of a TV tower of height 24 m notice the angle of elevation of the top of this tower to be 45° and 60° respectively. Find the distance between the two men.
$\tan 45^{\circ}=\frac{24}{x} \rightarrow x=\frac{24}{1}=24 \mathrm{~m}$
$\tan 60^{\circ}=\frac{24}{y} \rightarrow y=\frac{24}{\sqrt{3}}=13.86 \mathrm{~m}$

Distance between the two men: $24+13.86=37.86$ metres
8. Two men on the same side of a tall building notice the angle of elevation to the top of the building to be 30° and 60° respectively. If the height of the building is known to be $h=50 \mathrm{~m}$, find the distance between the two men.

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{50}{y} \rightarrow y=\frac{50}{\sqrt{3}}=28.87 \mathrm{~m} \\
& \tan 30^{\circ}=\frac{50}{x} \rightarrow x=\frac{50}{\sqrt{3} / 3}=86.6 \mathrm{~m}
\end{aligned}
$$

Distance between the two men: 86.6-28.87 = 57.73 metres
9. A rectangle has sides of length 12 cm and $x \mathrm{~cm}$. The acute angle between the diagonals of the rectangle is 40°. Determine x.

$$
180^{\circ}-40^{\circ}=140^{\circ} ; 140^{\circ}: 2=70^{\circ}
$$

$\tan 70^{\circ}=\frac{6}{y} \rightarrow y=\frac{6}{\sqrt{3}}=3.464$
$x=2 \times 3.464=6.93 \mathrm{~m}$
10. A 5.2 m ladder leans against a wall. The bottom of the ladder is 1.9 m from the wall. What angle does the ladder make with the ground?

$$
\cos x=\frac{1.9}{5.2} \rightarrow x=\arccos \left(\frac{1.9}{5.2}\right)=68^{\circ} 34^{\prime}
$$

