

2nd TERM GENERAL EXAM

Remember: in each question, write the steps you have taken to reach the solution. (1 point each question)

- A rectangular pond (6m x 4m), is surrounded by a uniform path of width x metres. The area of the path is equal to the area of the pond. Find x.
- 2. Solve the equation: $x + \sqrt{3x + 10} = 6$
- 3. Solve: $\frac{x+5}{x+3} = 1 \frac{x^2 + 3x + 6}{x^2 + 2x 3}$
- 4. Solve by substitution and graphically : $y = -\frac{2}{x+1}$
- 5. Solve the inequality: $\frac{(x-2)(x+2)}{4} \frac{x-6}{2} \le \frac{10+x}{5}$ 6. Solve the system of inequalities: $\frac{2x + \frac{3y}{4} \le 5}{10x - y > 6}$
- 7. Sketch the graph of the compound function:
 - $f(x) = \begin{cases} 1 x & x < -3 \\ 4 & -3 < x < 2 \\ 1 + \textit{log}_2 x & x \ge 2 \end{cases}$
 - a) Domain and range
 - b) Continuity
 - 8. Calculate x in the following equations:

a)
$$3^{x-2} = \frac{1}{27}$$
 b) $\log_{(2x+1)} 49 = 2$

Maths 4^{th} ESO

9. A ball is thrown in the air so that t seconds after it is thrown, its height h metres above it starting point is given by the function $h(t) = 25t - 5t^2$. Draw the graph of the function of $0 \le t \le 6$ and find:

a) The time when the ball is at its greatest height.

b) The greatest height reached by the ball.

c) The interval of time during which the ball is at a height of more than 30 m.

10. The diagrams show the graphs of four functions. Write their formulas (explaining why)

Maths 4th ESO

SOLUTION
1. Area of the pond
$$A = 6 \cdot 4 = 24m^2$$

Area of the path $24m^2$
Area of the path+pond $48m^2$
 $A = (6 + 2x)(4 + 2x) = 48$
 $24 + 12x + 8x + 4x^2 = 48$
 $4x^2 + 20x - 24 = 0$
 $x = \frac{-20 \pm \sqrt{400 + 384}}{8} = \frac{-20 \pm 28}{8} = \sqrt{\frac{1}{-6}}$ the width

 $\frac{\sqrt{400+384}}{8} = \frac{-20\pm28}{8} = \begin{pmatrix} 1\\ -6 \end{pmatrix}$ the width of the path is 1 metre

2.
$$x + \sqrt{3}x + 10 = 6 \rightarrow \sqrt{3}x + 10 = 6 - x$$

 $(\sqrt{3}x + 10)^2 = (6 - x)^2 \Rightarrow 3x + 10 = 36 - 12x + x^2 \rightarrow x^2 - 15x + 26 = 0$
 $x = \frac{15 \pm \sqrt{225 - 104}}{2} = \frac{15 \pm 11}{2} = {13 \ 2}$
Check: $\begin{array}{l} x = 13 \rightarrow 13 + \sqrt{39 + 10} = 6 \rightarrow 13 + 7 = 6 \text{ NO} \\ x = 2 \rightarrow 2 + \sqrt{6 + 10} = 6 \rightarrow 2 + 4 = 6 v \end{array}$ Solution: $x = 2$

3.
$$\frac{x+5}{x+3} = 1 - \frac{x^2 + 3x + 6}{x^2 + 2x - 3} \quad \text{factor: } x^2 + 2x - 3 = 0 \rightarrow x = \begin{cases} 1 \\ -3 \end{cases}$$
$$\frac{x^2 + 2x - 3 = (x - 1)(x + 3) \rightarrow \text{LCF} = (x - 1)(x + 3)$$
$$\frac{(x - 1)(x + 5)}{(x - 1)(x + 3)} = \frac{(x - 1)(x + 3)}{(x - 1)(x + 3)} - \frac{x^2 + 3x + 6}{(x - 1)(x + 3)} \rightarrow x^2 + 4x - 5 = x^2 + 2x - 3 - x^2 - 3x - 6$$
$$x^2 + 5x + 4 = 0 \rightarrow x = \frac{-5 \pm \sqrt{25 - 16}}{2} = \begin{cases} -1 \\ -4 \end{cases}$$

4.
$$y = -\frac{2}{x+1} \rightarrow 2x + \frac{2}{x+1} - 1 = 0 \Rightarrow 2x(x+1) + 2 - (x+1) = 0$$

 $2x^2 + x + 2 - x - 1 = 0 \Rightarrow 2x^2 + 1 = 0 \Rightarrow 2x^2 = -1$ No solution, inconsistent system

Maths 4th ESO

5.
$$\frac{(x-2)(x+2)}{4} - \frac{x-6}{2} \le \frac{10+x}{5} \to \frac{x^2-4}{4} - \frac{x-6}{2} \le \frac{10+x}{5}$$

 $\frac{5x^2-20}{20} - \frac{10x-60}{20} \le \frac{40+4x}{20} \to 5x^2 - 20 - 10x + 60 \le 40 + 4x$
 $5x^2 - 14x = 0 \to x(5x - 14) = 0 \to \begin{cases} x_1 = 0 \\ 5x - 14 = 0 \to x_2 = \frac{14}{5} \end{cases}$

We study the sign:

Maths 4th ESO

a)
$$3^{x-2} = \frac{1}{27} \Rightarrow 3^{x-2} = 3^{-3} \Rightarrow x-2 = -3 \Rightarrow x = -1$$

b) $log_{(2x+1)} 49 = 2 \Leftrightarrow (2x+1)^2 = 49 = 7^2 \Rightarrow 2x+1 = 7 \Rightarrow x = 3$

9. A ball is thrown in the air so that t seconds after it is thrown, its height h metres above it starting point is given by the function $h(t) = 25t - 5t^2$.

Draw the graph of the function of $0 \le t \le 6$ and find:

- a) The time when the ball is at its greatest height.
- b) The greatest height reached by the ball.

c) The interval of time during which the ball is at a height of more than 30 m.

 $y = -5x^2 + 25x$ it is a parabola \cap with vertex $\rightarrow x = -\frac{25}{-10} = \frac{5}{2}$

So the ball is at its greatest height 2.5 seconds after it is thrown

The greatest height is for

 $x = \frac{5}{2} \rightarrow y = -5\left(\frac{5}{2}\right)^2 + 25 \cdot \frac{5}{2} = \frac{125}{4} = 31.25 \text{ m}$

The ball is at a height of more than 30 metres between 2 and 3 seconds after the ball is thrown.

10. Graph A: It is a exponential function with base<1 (decreasing) and it pass through the point (-1, 2), so the function is $y = \left(\frac{1}{2}\right)^{x}$

Graph B: It is a radical function with Domain $[-1,+\infty)$ and negative. It pass through the point (3, -2), so the function is $y = -\sqrt{x+1}$

Graph C: It is a exponential function with, with base>1 (increasing). It pass through the point (1, 3), so the function is $y = 3^{x}$

Graph D: It is a logarithmic function with Domain $(-1,+\infty)$ (Type $log_{\alpha}(x+1)$). It pass through the points (0,0) and (2,1), so $y = log_{2}(x+1)$

8.